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　　Abstract　　The organization of human brain function is diverse on dif ferent spatial scales.Various cogni tive states are alw ays repre-

sen ted as distinct activity pat terns across the speci fic brain region on fine scales.Convent ional univariate analysis of functional M RI data

seeks to determine how a part icular cognit ive state i s encoded in brain activity by analyzing each voxel separately w ithout considering the

f ine-scale pat terns information contained in the local brain regions.In this paper , a local multivariate distance mapping (LM DM)t ech-
nique is proposed to detect the brain activat ion and to map the fine-scale b rain activity patterns.LMDM directly represents the local b rain

activity w ith the pat terns across mult iple voxels rather than individual voxels , and i t employs the multivariate distance betw een dif ferent

patterns to discriminate the brain state on f ine scales.Experiments w ith simulated and real fMRI data demonst rate that LMDM technique

can dramat ically increase the sensi tivity of the detect ion for the fine-scale brain activity pat terns w hich contain the subtle inform ation of the

experimental condit ions.

　　Keywords:　functional magnetic resonance imaging(fMRI), statistical analysis , multivariate distance , local pattern , pattern
classification.

　　Functional magnetic resonance imaging (fMRI)
has become a pow erful tool for study ing human brain

function due to its noninvasiveness and high spatial

and temporal resolution
[ 1—4]

.Human brain adheres
to two fundamental principles of functional organiza-

tion , e.g.functional integ ration and functional spe-

cialization
[ 5]
.These principles indicate that organiza-

tion of brain function varies on dif ferent spatial

scales.On a large scale , a complex function may in-
volve many specialized areas w hose union is mediated

by functional integ ration among them.Inversely , a
single specialized area may respond to many different

cognitive states , and the activity in that area is repre-
sented as distinct ly dist ributed patterns for different

stimulus on f iner scales
[ 6—12]

.With the development
of fMRI technology , the spatial resolution of a voxel
in 2 mm w idth can be robustly achieved w ith standard

clinical MRI scanners at 3T f ield st reng th.Using su-
per high field st rengths (≥4 T), fMRI is invading

the submillimeter range
[ 13]

.Such high spatial resolu-
tion of fMRI provides us the possibili ty to detect the

fine-scale activity pat terns evoked by the experimental

stimulus
[ 14 , 15]

.However , conventional univariate

general linear model (G LM)analysis of fMRI data

t reats each voxel as a separate entity as far as statist i-

cal analysis is concerned
[ 16]

.It is lack of a mechanism
to integrate the fine-scale information represented by
the multi-voxel pat terns.As a result , conventional u-
nivariate methods alw ay s fail to detect the fine-scale

activity pat terns of the experimental stimulus
[ 17—19]

.
Additionally , univariate analysis heavily relies on spa-
tial smoo thing of the data w ith Gaussian kernel(GK)

to increase the signal to noise and the statistical pow-

er
[ 20]

.Smoo thing w ill obscure f ine-scale pat terns of
weak effects that contain neuroscientifically relevant

info rmation.Consequent ly , an amount of informat ion
is removed by smoothing fMRI data and the high-res-

olution info rmation that fMRI affords is not ut i-
lized

[ 14 , 15]
.

To distinguish the dist inct brain activi ty pat terns

on fine scales and to efficient ly use the spatial pat tern

info rmation in the local brain regions , in this paper , a
local multivariate distance mapping (LMDM)tech-
nique is proposed to ext ract the pat terns of fMRI acti-
vation evoked by various experimental conditions.In
contrast to the conventional univariate analysis ,



LMDM represents the ef fects elicited by the experi-
mental stimulus w ith the multi-voxel pat terns , and it
employs multivariate distance betw een dif ferent activ-
ity pat terns to map brain function.The local activity
patterns contain mo re info rmation than any voxel in

the local reg ions.Therefore , using multivariate dis-
tance as the statistic can highlight fine-scale brain ac-
tivat ion and ex tract the full spatial pattern of brain

activi ty.

1　General description of LMDM

After the preprocessing steps(slice timing , spa-
tial realignment , detrending , no spatial smoothing ,
and removing nonbrain voxels), fMRI data can be
analy zed wi th LMDM as follow s:

(i)For a specif ic voxel v 0 in the brain , a local
region N(v 0)containing k voxels is grouped by a re-
gion g rowing algorithm which adopts v 0 as the

seed
[ 21 ,22]

.Region growing algori thm rather than a

fixed regular w indow is used to f ind the local homoge-
neous regions , because the activity regions are alw ays
i rregular.Region growing can w ell adapt the shape of
the local spatial patterns structure of brain activity.

(ii)Assuming that the spatial pat terns of the k

voxels w ithin the local reg ion N(v 0)evoked by vari-
ous experimental condi tions are sampled from differ-
ent multivariate random variables , mult ivariate dis-
tance function derived f rom pat tern classification

technique is used to measure dissimilari ty betw een

different pat terns.

(iii)The multivariate distance between the dif-
ferent pat terns is assigned as the statistic at voxel v 0.
It reveals the separabili ty between dif ferent brain

states by the act ivity pat terns in local region N(v 0).
When N(v 0)moves throughout the brain , multivari-
ate distance statistic is computed for each voxel , and a
continuous local multivariate distance map is con-
st ructed.

(iv)Nonparametric permutat ion test is per-
formed to obtain the significant patterns to distin-
guish dif ferent experimental conditions

[ 23 ,24]
.

2　Details of the LMDM technique

2.1　Multivariate statist ical distance betw een multi-
voxels pat terns

Based on the experimental paradigm , mult i-vox-

el pat terns of the local regions measured in condi tions

A and B can be regarded as the data sampling f rom

mul tivariate variable Xa =(X a1 , X a2 , …, X ai , …,
X ak)and Xb=(X b1 , X b2 , … , X bi , … , X bk), respec-

tively , where i stands for the index of the voxels in

local region N(v 0).Thus , multivariate statistical

distance , such as Fisher linear discrimination funct ion
(FLDF)f rom Fisher linear discrimination analysis

(FLDA)
[ 25—27]

, maximal margin function (MMF)

f rom support vecto r machine (SVM)
[ 28]

, and o ther

distance function
[ 29]

, can be employed to quantify the
degree of separat ion between the response pat terns Xa

and Xb.Fo r convenience , but w ithout loss of gener-
ality , we use the FLDF to instantiate the LMDM

method.As illust rated in Fig.1 , FLDA projects data
f rom k dimensions of space onto the discriminant axis

fo r the best separation of two datasets.FLDF statistic
indicates the distance or separability of the two sets

on the discriminant axis.

Fig.1.　FLDA projection of class samples onto the optimal dis-
criminant axis.For visualizat ion , only the fi rst tw o dimensions

(two-voxels pat tern)are shown(empty ci rcle and fi lled ci rcle indi-
cating the two dataset s f rom condit ions A and B, respectively).

The measurements f rom conditions A and B can

construct two sample clusters X a(na×k)and Xb(n b
×k), where na and nb indicate the number of sam-
ples in conditions A and B , respectively.

FLDA determines the distance between tw o mul-
tivariate clusters relative to the int racluster variance.
This distance is a function of the mean vector d :

d = X a- Xb

where  X a and  Xb are the mean vecto r fo r the cluster

X a and Xb , respectively .

 X′a =
1
na
∑
n
a

j=1
X a(j , ·)

where Xa(j , ·)represents the jth row of matrix Xa ,

· indicates all the columns(variables), and  X′a is the
t ranspose of  X a.
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Denote the FLDF test statistic z as

z =max
a
i

a′iBa i

a′i Wa i
(1)

where ai is the no rmalized column vector w ith length

k , B and W are the betw een- and w ithin-cluster
sums of squares matrices , respectively .Specifically ,

B =
n1n2

n1 +n2
dd′

W =(n1 +n2 -2)S p
Here , S p is the pooled covariance matrix fo r Xa and
Xb:

Sp =
(n a-1)S a +(nb -1)S b

na +nb -2

where Sa represents the sample covariance matrix fo r

the data matrix Xa:

Sa =
1

na -1∑
n
a

j=1
(X a(j , ·)′- Xa)(Xa(j , ·)′- X a)′

It can be proved that z is maximized when a i equals

a , the f irst normalized eigenvector of W
-1
B.

In the case of tw o g roups , a is expressed as

a =
S
-1
p d

‖S
-1
p d ‖

(2)

where S
-1
p is the inverse of the pooled covariance ma-

trix , and

‖S
-1
p d ‖= (S

-1
p d)′(S

-1
p d)

　　Consequently , the test statistic can be expressed
as

z =
a′Ba
a′Wa

and can also be w ritten as

z = cn(d′S
-1
p d)

cn =
(nan b)

[(na +nb)(na +nb -2)]
(3)

Since cn is a function of the sample size only , i t can
be omitted , and so w e can obtain

z =d′S
-1
p d (4)

From Eq.(4), we can see that FLDF is equal to M a-
halanobis distance in the two class situation.

The key of LMDM method is to use the multi-
variate distance function f rom pat tern classification

technique to measure the separabili ty betw een differ-
ent brain activi ty pat terns.As alternatives to FLDF ,
maximal margin function (MMF)f rom support vec-

tor machine (SVM)
[ 28]

and o ther mult ivariate dis-

tance functions
[ 29]

can be easily incorporated into

LMDM framew ork.

2.2　Statist ic inference

Nonparametric permutation test is applied to cal-
culate a map of p values for the local multivariate dis-
tance statistic.Here , the permutation test is mo re at-
t ract ive than parameter test because i ts validi ty is in-

dependent of the multivariate distribution of the da-
ta
[ 23 , 24]

.fMRI data is resampled in such a w ay that
the spatial pat terns of the data are unaltered , but
thei r temporal sequence is randomly permuted repeat-
edly.This permutation dest roys the correlation be-
tw een fMRI signal and the experimental conditions ,
but keeps the spat ial st ructure intact so that it can be

used to determine the p maps corresponding to the

distance betw een different experimental conditions.
1000 independent permutat ion realizations w ere per-
formed.To obtain an inferential map accounting for
mul tiple comparisons , the p map from randomizat ion

w as thresholded to ensure that the average FDR was

less than q=0.05
[ 30 , 31]

.

3　Experiments and results

3.1　Simulated data

A tw o conditions event-related experiment was
simulated.Each event lasted 500 ms and their onsets
were separated by 16 s.The condition order w as ran-
dom , and there were 30 events per condition.The
t ime course of fMRI signal associated w ith each con-
dition w as simulated by convolving each event to the

canonical hemodynamic response function(HRF)
[ 32]

.
The parameters of the functional volume are as fol-
low s:number of slice =5 , voxel sizes=3 ×3×3

mm
3
, TR=2000 ms and matrix=64×64.Five ac-

tive regions w ith different shapes and varied sizes

(10 , 30 , 90 , 180 and 270 voxels , respectively)were
generated.Each condition w as associated w ith a

Gaussian w hite-noise ef fect pattern w ithin the active
regions and no effects outside the regions.Taking
Gaussian white-noises as the effect patterns ensured
the ef fect power dist ributed among all the spatial-f re-
quency bands.Consequent ly , the condit ion informa-
tion was contained bo th in their locally averaged com-
ponents (low frequency) and in thei r spatial fine

st ructures(high f requency).The ef fect signals w ere
added to the spatiotemporal noise generated by slight

spatial smoothing of Gaussian w hite noise with a GK

of 3.5 mm full w idth at half maximum (FWHM)to
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imitate the correlation found betw een the residual

time courses of neighbo ring voxels in real fMRI data.
Five datasets w ere generated wi th dif ferent functional

cont rast-to-noise ratio (CNR)levels(0.2 , 0.4 , 0.6 ,
0.8 , and 1.0).The CN R was defined as the spatial
average wi thin the effect region of the absolute activi-
ty level at the maximum of the hemodynamic response

divided by the temporal standard deviation of the

backg round noise
[ 33]

.

3.2　Simulated data analysis

The simulated data w ere analyzed in three ways:
GLM with no smoo thing (GLM), G LM w ith GK

(GK-GLM), and LMDM method.Two GK with

FWHM of 6 mm and 9 mm were applied separately to

smooth the data.There were tw o w idely used GK in

fMRI data analysis.Fo r comparison , two local re-
gions with 10 and 30 voxels were adopted in LMDM

technique to approximatively match the range of spa-
tial combination of signals betw een GK-GLM and

LMDM approaches.

Receiver operating characteristic(ROC)analysis
w as conducted on the simulated data for quant itative

evaluation of three different analyses
[ 34 ,35]

.An ROC
curve is the plot of true activation rate versus false ac-
tivat ion rate for the threshold varying over the com-
plete range of map values.

True act ivation rate (sensitivity)is the ratio of
the number of voxels correct ly identified as activation

to the total number of truly activ ated voxels.

False activat ion rate(1-specif icity)is the ratio of
the number of voxels incorrectly identified as activa-
tion to the total number of truly non-activated voxels.
　　

ROC shows the t radeoff relationship betw een

sensitivity and specificity of the activation detection

methods.Thus , it provides a w ay to compare the

perfo rmance of different analy ses quantitatively.Fur-
thermore , the area under ROC (AUC)represents a

summary measure of what ex tent of high sensitivity

and specificity can be simultaneously achieved.Con-
cretely , AUC indicates how w ell a given statistic dis-
tinguishes effect regions f rom pure noise in our simu-
lations.

Fig .2 show s the AUC for each analysis plo tted
as functions of CNR.It is clear that smoothing de-
g rades perfo rmance of the GK-GLM under every

CNR.The more smoothing , the w orse the perfor-

mance is , because GK smoo thing fails to benef it f rom

local spat ial combinat ion of signals.LMDM performs

much bet ter than GLM and GK-GLM fo r all si tua-
tions , benef iting f rom spatial multivariate representa-
tion of signals w ithin the local region.

Fig.2.　Area under ROC for GLM , GK-GLM and LMDM at

various CNR , averaged over 30 simulations.

Fig.3 illustrates the ROC curves of dif ferent

analyses for one part icular case of the simulated data

w ith CN R being 0.6.I t can be observed that the

ROC curves of LMDM approached the top left corner

primely , and above the curves of GLM and GK-
GLM.This further clarifies the increased sensitivity
of the LMDM .With no smoothing , GLM performs

w orse than LMDM , but bet ter than GK-GLM.This
ref lects the fact that ef fects in our simulation are e-
qually st rong in all spatial-frequency bands up to the
Nyquist limit imposed by voxel size.GK-GLM can

no t detect the high f requency fine-scale pat terns be-
cause GK has filtered out the high spatial-frequency
component of the effect pat terns.However , LMDM
can ef fectively employ the local distributed spat ial

pat terns in all f requency components to discriminate

the ef fect under different conditions.

Fig.3.　ROC curves for one special case of simulated data w ith
CNR being 0.6.
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　　To gain an intuitive understanding of the quanti-
tative ROC results , Fig .4 illust rates the unthresh-
olded maps f rom the GLM , GK-GLM and LMDM

analy ses at CN R being 0.6.The absolutely t map ob-
tained by GLM performed on unsmoothed data did

not highlight the ef fect regions accurately , and the

SNR of the map w as low .When the same map w as
computed f rom GK-GLM with FWHM being 9 mm ,
some correct hot spots remained , but many incorrect
ones appeared outside the effect regions.Clearly ,
smoothing degraded the sensitivity of GK-GLM anal-
y sis since i t removed the information in the high-spa-
tial-frequency band of the effects.In contrast ,
LMDM w ith local region size of 30 voxels provided a

much bet ter map , which correctly highlighted the ef-
fect regions.This indicates that the LMDM tech-
nique properly integ rates the adjacent subtle effects in

the local regions and improves the power in discrimi-
nat ing the brain activity patterns evoked by different

conditions.

Fig.4.　The unth resholded maps obtained wi th GLM , GK-GLM
and LMDM analyses for one particular case of the simulated fM RI

data at CNR being 0.6.(a)Results of GLM ;(b)results of GK-
GLM with FWHM being 9 mm;(c)resul ts of LMDM w ith local

region size of 30 voxels.

3.3　Real fMRI data

A block design experiment w ith tw o conditions

(face and house)was employed.Six subjects were

presented wi th pictures of human faces or houses fo r

each condition.Subjects continuously fix ated on a

central cross w hile view ing images.There w ere 6 face
blocks and 6 house blocks in total.Each block con-
tained 20 images and each image w as presented fo r

500 ms , the block lasted 30 s.There was a 1s

crosshair fix ation between each images.Baselines
(crosshair fixation)last about 10s.BOLD fMRI data

were acquired w ith a T2
＊
-weighted gradient echo

EPI sequence:TR=2000 ms , TE=30 ms , FOV=

240×240 mm
2
, matrix =64×64 , number of slices=

25 , and slice thickness=4 mm.

All data were preprocessed using SPM 2 (ht tp:

//www .fil.ion.ucl.ac.uk/SPM/)
[ 16]

as follow s:
Slices w ere temporally realigned to compensate fo r the

acquisi tio n time lag.Whole volume images w ere re-
aligned to compensate for the head movement , and
drif ts w ere corrected by second-order polynomial de-
t rending.For LMDM analysis , time series w ere

shif ted 4 s forw ards to offset the time delay of HRF .
In addition , volumes acquired during t ransit ions be-
tw een experimental states were removed.Such vol-
ume removal simplified experimental state assign-
ments and further reduced HRF effects.

3.4　Real fMRI data analy sis

Af ter being preprocessed , fMRI data w ere ana-
ly zed using GLM , GK-GLM and LMDM.As seen
from the simulation experiment , LMDM performed

bet ter w hen the local region size w as 30 voxels.We
hereby set the local region size as 30 voxels in the

analysis of real fMRI data.A GK of FWHM being 9

mm was used in the GK-GLM analysis to appro xi-
mately match the range of spatial combination of sig-
nals between LMDM and GK-GLM analy ses.

As illust rated in Fig.5 , all the three analy ses
found the major blobs of brain activity (FFA:
fusiform face area;PPA:parahippocampal place

area ) evoked by the experimental condi-

tions
[ 9 , 10 ,12 , 36 ,37]

.The GLM and GK-G LM analy ses

detected the voxels w hich are more st rongly active

during face perception than house perception and vice

versa , whereas LMDM highlighted regions whose lo-
cal activity pattern distinguished the face and house

conditions.It can be observed that GLM analysis

could roughly localize the act ivated region , whereas
the activation maps show salt-and-pepper phe-
nomenon seriously (Fig.5(a)).GK-GLM w ith

FWHM being 9 mm resulted in the clean maps , and
only voxels that responded maximally to the category

being viewed were retained (Fig.5(b)).In con-
t rast , as show n in Fig .5(c), LMDM w ith local re-
gions containing 30 voxels that closely matched the

size of GK of FWHM being 9 mm was able to better
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detect the activated voxels w hether its response to the

category being viewed w as strong or w eak , suggest-
ing that the representations of faces and house ex-
tended beyond the foci regions detected by GK-GLM .
This indicates that there are many voxels containing

the ef fects related to the experimental condit ions in

the fine-g rained structure of the act ivity pat terns.
GK-G LM failed to detect these regions because the

specific information w as lost w hen the data w ere

smoothed.

Fig.5.　Act ivation maps of real fM RI data(face vs house).(a)Result s of GLM;(b)results of GK-GLM w ith FWHM being 9 mm;(c)results
of LMDM w ith local region size of 30 voxels.L:lef t;R:righ t.

　　We further found that among the subjects , all
activation regions detected by LMDM were dist ribut-
ed more w idely than that detected by the GLM .To
measure the reproducibili ty of statistical maps f rom

each of the three analy ses , we transformed all statisti-
cal parameter maps to the MN I template , and calcu-
lated the pairwise correlation coef ficients (r)of the

C
2
6(15)pairs of maps f rom the identical method.The

intersubject correlation coeff icients fo r each analy sis

w ere summarized by its mean and standard errors of

Fig.6.　The reproducibility of the activat ion maps f rom each anal-
ysis.

the mean( r±sem)as show n in Fig.6.Clearly , the
reproducibility of the maps f rom G LM (0.25±0.04)
is the lowest in the three analyses.The unsmoo thed
fMRI maps w ere very noisy , so the reproducibility of
i t is very low .The reproducibility of the maps f rom
LMDM (0.49±0.03)is somewhat lower than that
from GK-G LM (0.57 ±0.02).This is mainly be-

cause activity pat terns are unique to each individual on

the fine spatial scale of millimeters.Therefo re , multi-
subject group averaging on fine scale is a challenging

issue , and further investig at ion is needed.

4　Discussion

fMRI data contain wealthy informat ion of brain

activity f rom coarse scale to f ine scale.Current ly ,
few efforts have been focused directly on ex tracting

the fine-grained info rmation hidden in fMRI data.
Conventional univariate analysis of fMRI data relies

exclusively on the informat ion contained in the time

course of individual voxels , and the preprocessing

procedure also inappropriately removes some fine-scale
info rmation.In this paper , we have proposed a local
mul tivariate distance mapping technique to map the

brain function.By combining multi-voxel pat tern in-
formation within the local homogenous region ,
LMDM is sensitive to the spatial fine st ructure , and
can efficiently distinguish the representation of v ari-
ous brain states.Results f rom the simulation and real

fMRI data demonst rate that LMDM method has bet-
ter performance to detect the fine-scale spatial pat-
terns of brain act ivation.

References

1 Kw ong KK , Belliveau JW , Chesler DA , et al.Dynamic magnetic

resonance imaging of human brain activity du ring primary sensory

stimulat ion.Proceedings of the National Academy of S ciences

USA , 1992 , 89(12):5675—5679

1513Prog ress in Natural Science　Vol.17 No.12　2007　www .tandf.co.uk/ journals



2 Ogawa S , Lee TM , Kay AR , et al.Brain magnetic resonance

imaging wi th cont rast dependent on blood oxygenation.Proceed-
ings of the National Academy of Sciences USA , 1990 , 87(24):

9868—9872

3 Logothet is NK , Pauls J , Augath M , et al.Neurophysiological in-
vestigation of the basis of the fMRI signal.Natu re , 2001 , 412

(6843):150—157
4 Raichle ME and Min tun MA.Brain w ork and brain imaging.An-

nual Review of Neu roscience , 2006 , 29:449—476
5 Frackowiak RSJ , Ashburner JT , Penny WD , et al.Human Brain

Function, 2nd ed.San Diego:Academic Press , 2003 , 971—

1118　　
6 Haynes JD and Rees G.Decoding mental states f rom brain activity

in humans.Nature Review Neuroscience , 2006 , 7(7):523—
534　　

7 Cohen JD and Tong F.The face of cont roversy.Science , 2001 ,
293(5539):2405—2407

8 Boynton GM.Imaging orien tat ion selectivity:decoding conscious

perception in V1.Nature Neuroscience , 2005 , 8(5):541—
542　　

9 Haxby JV , Gobbini MI , Furey M L , et al.Dist ributed and over-
lapping representations of faces and objects in vent ral temporal cor-

t ex.S cience , 2001 , 293(5539):2425—2430

10 Carlson TA , Sch rater P and He S.Pat terns of activity in the cate-
gorical representation of objects. Journal of Cogni tive Neu ro-

science , 2003 , 15(5):704—717
11 Kamitani Y and Tong F.Decoding the visual and subject ive con-

t ent s of the human brain.Nature Neu roscience , 2005 , 8(5):
679—685

12 O' Toole A , Jiang F , Abdi H , et al.Partially dist ributed represen-

t ation of object s and faces in ventral temporal cortex.Journal of
Cogni tive Neuroscience , 2005 , 17(4):580—590

13 Harel N , Ugurbil K , Uludag K , et al.Frontiers of brain mapping
using MRI.Journal of Magnet ic Resonance Imaging , 2006 , 23

(6):945—957
14 Kriegeskorte N , Goebel R and Bandett ini P.Information-based

functional brain mapping.Proceedings of the National Academy of

Sciences USA , 2006 , 103(10):3863—3868
15 Bandet tini P.Functional MRI today.International Journal of Psy-

chophysiology , 2007 , 63(2):138—145
16 Friston KJ , Holmes AP , Worsley KJ , et al.S tat istical paramet ric

maps in functional imaging:a general linear approach.Human
Brain Mapping , 1995 , 2(4):189—210

17 Petersson KM , Nichols T , Poline JB , et al.S tatist ical limitations

in funct ional neu roimaging I.Non-inferential methods and statist i-
cal models.Philosophical Transactions of the Royal Society of Lon-

don B , 1999 , 354(1387):1240—1260
18 Petersson KM , Nichols T , Poline JB , et al.S tatist ical limitations

in funct ional neuroimaging II.S ignal detection and stat istical infer-

ence.Philosophical T ransactions of the Royal Society of London B ,
1999 , 354(1387):1261—1281

19 Tian J , Yang L and Hu J.Recent advances in the data analysis

method of functional magnetic resonance imaging and it s applica-

tions in neuroimaging.Progress in Natural S cience , 2006 , 16(8):
785—795

20 Friston KJ , Josephs O , Zarah n E , et al.To smooth or not to

smooth ?Bias and ef ficiency in fM RI time-series analysis.NeuroIm-
age , 2000 , 12(2):196—208

21 Bellec P , Perlbarg V , Jbabdi S , et al.Iden tification of large-scale

networks in the brain using fM RI.NeuroImage , 2006 , 29(4):
1231—1243

22 Lu Y , Jiang T and Zang Y.Region growing method for the analy-
sis of funct ional M RI data.NeuroImage , 2003 , 20(1):455—

465　　
23 Efron B and Tibshi rani R.An Int roduct ion to the Bootstrap.New

York:C hapman &Hall , 1993 , 202—219

24 Nichols TE and Holmes AP.Nonparamet ric permutation test s for
funct ional neuroimaging:a primer w ith examples.Human Brain

Mapping , 2002 , 15(1):1—25
25 Mardia K , Ken t J and Bibby J.Multivariate Analysis.London:A-

cademic Press , 1979 , 300—332
26 Joh nson R and Wichern D.Applied Multivariate S tatist ical Analy-

sis.5th ed.Englew ood C lif fs , New Jersey:Prent ice-Hall , 2002 ,

581—667
27 Duda RO , Hart PE and Stork DG.Pat tern C lassification.2nd ed.

New York:Wiley-Interscience , 2000 , 215—281
28 Vapnik VN.Stat istical Learning T heory.New York:Wiley-Inter-

science , 1998 , 401—520

29 Zhou SK and Chellappa R.From sample similarity to ensemble sim-
ilari ty:p robabilistic distance measu res in reproducing kernel Hilbert

space.IEEE Transactions on Pattern Analysis and M achine Intelli-
gence , 2006 , 28(6):917—929

30 Benjamini Y and Yeku tieli D.The cont rol of the false discovery
rate in multiple testing under dependency.The Annals of Stati s-

tics , 2001 , 29(4):1165—1188

31 Genovese CR , Lazar NA and Nichols TE.Th resholding of statisti-
cal maps in functional neuroimaging using the false discovery rate.

NeuroImage , 2002 , 15(4):870—878
32 Friston KJ , Fletcher P , Josephs O , et al.Even t-related fM RI:

characterizing dif ferential responses.NeuroImage , 1998 , 7(1):
30—40

33 Langer N.Tutorial in biostatist ics:stati stical approaches to human

brain mapping by functional magnetic resonance imaging.S tatistics
in Medicine , 1996 , 15(4):389—428

34 Sorenson J and Wang X.ROC methods for evaluation of fM RI

techniques.Magnetic Resonance in M edicine , 1996 , 36(5):

737—744
35 Skudlarski P , Constable RT and Gore JC.ROC analysis of statisti-

cal methods used in functional M RI:individual subject s.NeuroIm-

age , 1999 , 9(3):311—329
36 Kanwisher N , McDermott J and C hun MM .The fusiform face

area:A module in human ext rast riate cortex specialized for face

percept ion.The Journal of Neu roscience , 1997 , 17(11):4302—

4311

37 Kanwisher N and Yovel G.The fusi form face area:a cort ical re-
gion specialized for the perception of faces.Philosophical Transac-

tions of the Royal S ociety of London B , 2006 , 361(1476):
2109—2128

1514 www .tandf.co.uk/ journals　Progress in Natural Science　Vol.17 No.12　2007


