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Abstract

sented as distinet activity patterns across the specific brain region on fine scales. Conventional univariate analysis of functional M RI data

The organization of human brain function is diverse on different spatial scales. Various cognitive states are alw ays repre-

seeks to determine how a particular cognitive state is encoded in brain activity by amalyzing each voxel separately without considering the
fine-scale patterns information contained in the local brain regions. In this paper. a local multivariate distance mapping ( LM DM) tech-
nique is proposed to detect the brain activation and to map the fine-scale brain activity patterns. LMDM directly represents the local brain
activity with the pattems across multiple voxels rather than individual voxels, and it employs the multivarate distance between different
patterns to discriminate the brain state on fine scales. Experiments with simulated and real fMRI data demonstrate that LMDM technique

can dramatically increase the sensitivity of the detection for the fine-scale brain activity pattems which contain the subtle inform ation of the

experimental conditions.
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Functional magnetic resonance imaging (fMRI)
has become a pow erful tool for studying human brain
function due to its noninvasiveness and high spatial

[1—

and temporal resolution Human brain adheres

to two fundamental principles of functional organiza-
tion e.g. functional integration and functional spe-
cialization ¥ . These principles indicate that organiza-
tion of brain function varies on different spatial
scales. On a large scale, a complex function may in-
volve many specialized areas whose union is mediated
by functional integration among them. Inversely, a
single specialized area may respond to many different
cognitive states, and the activity in that area is repre-
sented as distinctly distributed patterns for different
stimulus on finer scales * . With the development
of fMRI technology, the spatial resolution of a voxel
in 2 mm width can be robustly achieved with standard
clinical M RI scanners at 3T field strength. Using su-
per high field strengths C4 T), fMRI is invading

the submillimeter range[ Bl Such high spatial resolu-
tion of fM RI provides us the possibility to detect the

fine-scale activity patterns evoked by the experimental

4 15]

. [1 . . .
stimulus However, conventional univariate

functional magnetic resonance imaging ( fMRD), statistical analysis multivariate distance local pattern pattern

general linear model (GLM) analysis of fMRI data
treats each voxel as a separate entity as far as statisti-

cal analysis is concemed ' . Tt is lack of a mechanism
to integrate the fine-scale information represented by
the multi-voxel patterns. As a result, conventional u-
nivariate methods always fail to detect the fine-scale
activity patterns of the experimental stimulus '
Additionally, univariate analysis heavily relies on spa-
tial smoothing of the data with Gaussian kernel (GK)
to increase the signal to noise and the statistical pow-
el . Smoothing will obscure fine-scale patterns of
weak effects that contain neuroscientifically relevant
information. Consequently, an amount of information
is removed by smoothing fM RI data and the high-res-
olution information that fMRI affords is not uti-
lized ™.

To distinguish the distinct brain activity pattemns
on fine scales and to efficiently use the spatial pattern
information in the local brain regions, in this paper, a
local multivariate distance mapping (LMDM ) tech-
nique is proposed to extract the patterns of M RI acti-
vation evoked by various experimental conditions. In
contrast to the conventional univariate analysis
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LM DM represents the effects elicited by the experi-
mental stimulus with the multi-voxel pattermns and it
employs multivariate distance betw een different activ-
ity patterns to map brain function. The local activity
patterns contain more information than any voxel in
the local regions. Therefore, using multivariate dis-
tance as the statistic can highlight fine-scale brain ac-
tivation and extract the full spatial pattern of brain
activity.

1 General description of LMDM

After the preprocessing steps (slice timing, spa-
tial realignment, detrending, no spatial smoothing,
and removing nonbrain voxels), fMRI data can be

analyzed with LM DM as follows:

(i) For a specific voxel v in the brain, a local
region N(v,) containing k voxels is grouped by a re-

gion growing algorithm which adopts vy as the

seed ™. Region growing algorithm mather than a

fixed regular window is used to find the local homoge-
neous regions, because the activity regions are alw ays
irregular. Region growing can well adapt the shape of
the local spatial patterns structure of brain activity.

(ii) Assuming that the spatial pattems of the k
voxels within the local region N (vo) evoked by vari-
ous experimental conditions are sampled from differ-
ent multivariate random variables multivariate dis-
tance function derived from pattern classification
technique is used to measure dissimilarity between
different patterns.

(iii) The multivariate distance between the dif-
ferent patternsis assigned as the statistic at voxel v.
It reveals the separability between different brain
states by the activity patterns in local region N (v).
When N (vy) moves throughout the brain, multivari-
ate distance statistic is computed for each voxel, and a
continuous local multivariate distance map is con-
structed.

(iv) Nonparametric permutation test is per-

formed to obtain the significant patterns to distin-

S . o[22
guish different experimental conditions

2 Details of the LMDM technique

2.1 Multivariate statistical distance between multi-
voxels patterns

Based on the experimental paradigm, multi-vox-

el patterns of the local regions measured in conditions
A and B can be regarded as the data sampling from
mul tivariate variable X, = (Xa» Xas =5 Xais s
Xai) and X,= (Xyp1s Xis -+ Xbis - Xk )s respec-
tively, where i stands for the index of the voxels in
local region N (vy). Thus multivariate statistical
distance, such as Fisher linear discrimination function
(FLDF) from Fisher linear discrimination analysis

(FLDA ) Z

2
from support vector machine (SVM 23, and other

, maximal margin function (MMF )

distance function'”™, can be employed to quantify the
degree of separation between the response patterns X,
and X},. For convenience, but without loss of gener-
ality, we use the FLDF to instantiate the LMDM
method. Asillustrated in Fig. 1, FLDA projects data
from k dimensions of space onto the discriminant axis
for the best separation of two datasets. FLDF statistic
indicates the distance or separability of the two sets
on the discriminant axis.

Voxel 2

Fig. 1. FLDA pmojection of class samples onto the optimal dis-
criminant axis. For visualization, only the first two dimensions
(two-voxels pattem) are shown (empty circle and filled circle indi-
cating the two datasets from conditions A and B respectively).
The measurements from conditions A and B can
construct two sample clusters X, (n, X k) and X, (n,,
X k), where n,and nj, indicate the number of sam-

ples in conditions A and B, respectively.

FLDA determines the distance between two mul-
tivariate clusters relative to the intracluster variance.
This distance is a function of the mean vector d ;

d=X.— X}
where X, and X, are the mean vector for the cluster
X, and Xj, respectively.

,
X = F2IX.Gs O
Ny Jj=1
where X, (j, °) represents the jth row of matrix X,

!
° indicates all the columns (variables), and X, is the
transpose of X,.
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Denote the FLDF test statistic z as

!
a;Ba;
z = max| 7 D
o« | a; Wa;

where a; is the normalized column vector with length
ks, B and W are the between- and within-cluster
sums of squares matrices, respectively. Specifically,
nin2 /
T ot nzdd
W= (n+ n,— 28,
Here, S, is the pooled covariance matrix for X, and
Xb:
(n,— DS, + (n,— 1S,

P n,+tmn,—2
where S, represents the sample covariance matrix for
the data matrix X,:

Sa: n L]Z(Xd(]’ o)/7Xa)()(a(j’ 0)/7Xa)/
P j=1

a

It can be proved that z is maximized when a; equals

. . . —~1
a, the first normalized eigenvector of W~ B.

In the case of two groups, a is expressed as
S, d

—_— 2)
s, d |l

a =

1. . .
where S, " is the inverse of the pooled covariance ma-

trix, and

—1 _ 1 / —1
s, da |l= [, dS, d

Consequently, the test statistic can be expressed

as
-
a Wa
and can also be written as
z = cn(d,S:,ld)
(nany) 3)

e [ (nat np)(na+ ny— 2))
Since ¢, is a function of the sample size only, it can
be omitted, and so we can obtain
z=4d's'd 4)
From Eq. (4), we can see that FLDF is equal to M a-
halanobis distance in the two class situation.

The key of LMDM method is to use the multi-
variate distance function from pattern classification
technique to measure the separability between differ-
ent brain activity patterns. As alternatives to FLDF,

maxim al margin function (MMF) from support vec-

) 2 . )
tor machine (SVM)'® and other multivariate dis-

) 29
tance functions

LMDM framew ork.

can be easily incorporated into

2.2 Statistic inference

Nonparametric permutation test is applied to cal-
culate a map of p values for the local multivariate dis-
tance statistic. Here, the permutation test is more at-
tractive than parameter test because its validity is in-
de[g(;nz(}]ent of the multivariate distribution of the da-
ta

the spatial pattemns of the data are unaltered, but

. fMRI data is resampled in such a way that

their temporal sequence is randomly permuted repeat-
edly. This permutation destroys the correlation be-
tween fM RI signal and the experimental conditions
but keeps the spatial structure intact so that it can be
used to determine the p maps corresponding to the
distance between different experimental conditions.
1000 independent permutation realizations were per-
formed. To obtain an inferential map accounting for
multiple com parisons, the p map from randomization
was thresholded to ensure that the average FDR was
less than ¢=0. 05

3 Experiments and results

3.1 Simulated data

A two conditions event-related experiment was
simulated. Each event lasted 500 ms and their onsets
were separated by 16 s. The condition order w as ran-
dom, and there were 30 events per condition. The
time course of M RI signal associated with each con-

dition was simulated by convolving each event to the

. : : 32
canonical hemody namic response function (HRF P

The parameters of the functional volume are as fol-

lows: number of slice =5, voxel sizes= 3 X 3X 3

mm3, TR=2000 ms and matrix= 64X 64. Five ac-

tive regions with different shapes and varied sizes
(10, 30, 90, 180 and 270 voxels, respectively) were
generated. FEach condition was associated with a
Gaussian w hite-noise effect pattern within the active
regions and no effects outside the regions. Taking
Gaussian white-noises as the effect patterns ensured
the effect power distributed among all the spatial-fre-
quency bands. Consequently, the condition informa-
tion was contained both in their locally averaged com-
ponents (low frequency ) and in their spatial fine
structures Chigh frequency ). The effect signals were
added to the spatiotemporal noise generated by slight
spatial smoothing of Gaussian w hite noise with a GK

of 3.5 mm full width at half maximum (FWHM) to
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imitate the correlation found between the residual
time courses of neighboring voxels in real fM RI data.
Five datasets were generated with different functional
contrast-to-noise ratio (CNR) levels (0.2, 0.4, 0.6,
0.8 and 1.0). The CNR was defined as the spatial
average within the effect region of the absolute activi-
ty level at the maximum of the hemodynamic response
divided by the temporal standard deviation of the
background noise'

3.2 Simulated data analysis

The simulated data were analyzed in three ways:
GLM with no smoothing (GLM ), GILM with GK
(GK-GIM ), and LMDM method. Two GK with
FWHM of 6 mm and 9 mm were applied separately to
smooth the data. There were two widely used GK in
fMRI data analysis. For comparison, two local re-
gions with 10 and 30 voxels were adopted in LM DM
technique to approximatively match the range of spa-
tial combination of signals between GK-GLM and
LM DM approaches.

Receiver operating characteristic (ROC) analysis
was conducted on the simulated data for quantitative
evaluation of three different analyses[ *31 " An ROC
curve is the plot of true activation rate versus false ac-
tivation rate for the threshold varying over the com-
plete range of map values.

True activation rate (sensitivity ) is the ratio of
the number of voxels correctly identified as activation
to the total number of truly activated voxels.

False activation rate (1-specificity ) is the ratio of
the number of voxels incorrectly identified as activa-
tion to the total number of truly non-activated voxels.

ROC shows the tradeoff relationship between
sensitivity and specificity of the activation detection
methods. Thus, it provides a way to compare the
performance of different analyses quantitatively. Fur-
thermore, the area under ROC (AUC) represents a
summary measure of what extent of high sensitivity
and specificity can be simultaneously achieved. Con-
cretely, AUC indicates how well a given statistic dis-
tinguishes effect regions from pure noise in our simu-
lations.

Fig. 2 shows the AUC for each analysis plotted
as functions of CNR. It is clear that smoothing de-
grades performance of the GK-GLM under every
CNR. The more smoothing, the worse the perfor-

mance is, because GK smoothing fails to benefit from
local spatial combination of signals. LM DM performs
much better than GLM and GK-GLM for all situa-
tions, benefiting from spatial multivariate representa-
tion of signals within the local region.

=—8— No smoothing
—&— FWHM =6 mm
—&— FWHM =9 mm
—&— Region size = 10 voxel
—e— Region size = 30 voxel

02 03 04 05 06 07 08 09 |1
CNR

Fig. 2. Area under ROC for GLM, GK-GLM and LMDM at
various CNR, averaged over 30 smulations.

Fig. 3 illustrates the ROC curves of different
analyses for one particular case of the simulated data
with CNR being 0. 6. It can be observed that the
ROC curves of LMDM approached the top left corner
primely, and above the curves of GLM and GK-
GLM. This further clarifies the increased sensitivity
of the LMDM . With no smoothing, GLM performs
worse than LMDM, but better than GK-GLM. This
reflects the fact that effects in our simulation are e-
qually strong in all spatial-frequency bands up to the
Nyquist limit imposed by voxel size. GK-GLM can
not detect the high frequency fine-scale patterns be-
cause GK has filtered out the high spatial-frequency
component of the effect patterns. However, LMDM
can effectively employ the local distributed spatial
patterns in all frequency components to discriminate
the effect under different conditions.

J —— No smoothing
203 —— FWHM =6 mm
02 —— FWHM =9 mm

—— Region size = 10 voxel
—— Region size = 30 voxel

0 0102 0304 05 0607 0809 1
False activation rate

Fig. 3. ROC curves for one special case of simulated data with
CNR being 0. 6.
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To gain an intuitive understanding of the quanti-
tative ROC results Fig. 4 illustrates the unthresh-
olded maps from the GLM, GK-GLM and LM DM
analy ses at CN R being 0. 6. The absolutely ¢ map ob-
tained by GLM performed on unsmoothed data did
not highlicht the effect regions accurately, and the
SNR of the map was low. When the same map was
computed from GK-GLM with FWHM being 9 mm,
some correct hot spots remaineds but many incorrect
ones appeared outside the effect regions. Clearly,
smoothing degraded the sensitivity of GK-GLM anal-
ysis since it removed the information in the high-spa-
tial-frequency band of the effects. In contrast,
LM DM with local region size of 30 voxels provided a
much better map, which correctly highlighted the ef-
fect regions. This indicates that the LMDM tech-
nique properly integrates the adjacent subtle effects in
the local regions and improves the power in discrimi-
nating the brain activity patterns evoked by different

conditions.

Fig. 4. The unthresholded maps obtained with GLM, GK-GLM
and LMDM analyses for one particular case of the simulated fM RI
data at CNR being 0. 6. (a) Results of GLM; (b) results of GK-
GLM with FWHM being 9 mm; (c¢) results of LMDM with local

region size of 30 voxels.

3.3 Real fMRI data

A block design experiment with two conditions
(face and house) was employed. Six subjects were
presented with pictures of human faces or houses for
each condition. Subjects continuously fixated on a
central cross while view ing images. There were 6 face
blocks and 6 house blocks in total. Each block con-
tained 20 images and each image was presented for

500 ms, the block lasted 30 s. There was a ls

crosshair fixation between each images. Baselines
(crosshair fixation) last about 10s. BOLD fMRI data
were acquired with a TZ*-Weighted gradient echo
EPI sequence: TR=2000 ms TE=30 ms, FOV=
240X 240 mm’, matrix=64> 64, number of slices=

25, and slice thickness=4 mm.

All data were preprocessed using SPM 2 (http:

//www. fil. ion. ucl. ac. uk/SPM/)''Y as follows:
Slices were temporally realigned to compensate for the
acquisition time lag. Whole volume images were re-
aligned to compensate for the head movement, and
drifts were corrected by second-order polynomial de-
trending. For LMDM analysis, time series were
shifted 4 s forw ards to offset the time delay of HRF.
In addition, volumes acquired during transitions be-
tween experimental states were removed. Such vol-
ume removal simplified experimental state assign-
ments and further reduced HRF effects.

3.4 Real fMRI data analysis

After being preprocessed, fMRI data were ana-
lyzed using GLM, GK-GLM and LM DM. As seen
from the simulation experiment, LM DM performed
better when the local region size was 30 voxels. We
hereby set the local region size as 30 voxels in the
analysis of real fM RI data. A GK of FWHM being 9
mm was used in the GK-GLM analysis to approxi-
mately match the range of spatial combination of sig-

nals between LMDM and GK-GLM analy ses.

As illustrated in Fig. 5, all the three analyses
found the major blobs of brain activity (FFA;
fusiform face area; PPA:. parahippocampal place
area ) evoked by the experimental
. [910.12 36,37
tions . The GLM and GK-GLM analyses

detected the voxels which are more strongly active

condi-

during face perception than house perception and vice
versa, whereas LM DM highlighted regions whose lo-
cal activity pattern distinguished the face and house
conditions. It can be observed that GLM analysis
could roughly localize the activated region, whereas
the activation maps show salt-and-pepper phe-
nomenon seriously (Fig. 5 (a)). GK-GLM with
FWHM being 9 mm resulted in the clean maps, and
only voxels that responded maximally to the category
being viewed were retained (Fig. 5(b)). In con-
trast, as shown in Fig. 5(c), LM DM with local re-
gions containing 30 voxels that closely matched the

size of GK of FWHM being 9 mm was able to better
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detect the activated voxels whether its response to the
category being viewed was strong or weak, suggest-
ing that the representations of faces and house ex-
tended beyond the foci regions detected by GK-GLM .

This indicates that there are many voxels containing

the effects related to the experimental conditions in
the fine-grained structure of the activity patterns.
GK-GLM failed to detect these regions because the
specific information was lost when the data were
smoothed.

‘"quOQ

p<0.05
House o

W96

House T

(c)

g(FDR <0.05

Fig. 5. Activation maps of real f{M Rl data (face vs house). (a) Results of GLM; (b) results of GK-GLM with FWHM being 9 mm; (c¢) results

of LMDM with bcal region size of 30 voxels. L; left; R: right.

We further found that among the subjects, all
activation regions detected by LMDM were distribut-
ed more widely than that detected by the GLM. To
measure the reproducibility of statistical maps from
each of the three analyses, we transformed all statisti-
cal parameter maps to the MN 1 template, and calcu-
lated the pairwise correlation coefficients (7 ) of the
Cé(lS) paits of maps from the identical method. The
intersubject correlation coefficients for each analysis
were summarized by its mean and standard errors of
the mean (7 ==sem) as shownin Fig. 6. Clearly, the
reproducibility of the maps from G LM (0.25=+0.04)
is the lowest in the three analyses. The unsmoothed
fM RI maps were very noisy, so the reproducibility of
itis very low. The reproducibility of the maps from
LM DM (0.49 #=0. 03) is somewhat lower than that
from GK-GLM (0.57 #=0. 02). This is mainly be-

0.7r1

0.6

0.5
204
51
S 03r T

0.2} I

0.1

0
GLM  GK-GLM LMDM
Fig. 6. The reproducibility of the activation maps from each amal-

ysis.

cause activity patterns are unique to each individual on
the fine spatial scale of millimeters. Therefore, multi-
subject group averaging on fine scale is a challenging
issue, and further investigation is needed.

4 Discussion

fMRI data contain wealthy information of brain
activity from coarse scale to fine scale. Currently,
few efforts have been focused directly on extracting
the fine-grained information hidden in fMRI data.
Conventional univariate analysis of M RI data relies
exclusively on the information contained in the time
course of individual voxels, and the preprocessing
procedure also inappropriately removes some fine-scale
information. In this paper, we have proposed a local
mul tivariate distance mapping technique to map the
brain function. By combining multi-voxel pattern in-
formation within the local homogenous regions
LMDM is sensitive to the spatial fine structure, and
can efficiently distinguish the representation of vari-
ous brain states. Results from the simulation and real
fMRI data demonstrate that LM DM method has bet-
ter performance to detect the fine-scale spatial pat-
terns of brain activation.
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